Why data science?

Data Scientist: The Sexiest Job of the 21st Century
Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and DJ Patil

From the Magazine (October 2012)
Why biomedical data science?

• Biology is an information science
 - Massive resolution, complexity, and scale
• Data science enables analysis of otherwise impenetrable data
 - Data-driven, agnostic, systematic
 - See the forest (big picture), then select the most promising trees
• Can accelerate basic/clinical science (by days, months, or years)
• Robust and reproducible
• Foundation of precision medicine
My path to running a data science research group

1999: Start undergrad UCSC (Computer Science)

2001: UCSB (Biology)

2004: Start grad school UCSB (Bioinformatics)

2007: 1st 1st author paper

2011: Postdoc Stanford (Cancer Genomics)

2015: K99 (NCI)

2021: R01 (NCI)

Late 2017: Assistant Professor Stanford (Biomedical Data Science)

2022: CZ Biohub

Present
Cancer remains the 2nd leading cause of death

- Tumors are heterogenous on molecular, phenotypic, and spatial levels
- Every patient’s cancer is unique
- Critical need for \textbf{precision oncology}: individualized diagnostics and treatments
What We Do

Developmental Hierarchies

Composition

Ecosystems

Tumor

Population-level analyses

Precision medicine
Today: Discovering cancer resistance mechanisms with data viz

Favorable

Benefit

Resistance

Adverse

Severe Toxicity
Why data visualization (data viz)?

Pictures reveal hidden content –
Map of cell phone towers illuminates densely and sparsely populated areas (and their connections)
Why data visualization: Seeing is believing

Seeing is believing

Scientists can often make indirect measurements that tell us about things we can’t actually see. For scientists who work on molecules, such as myself, this is especially true: Many of the small and large molecules that dance in my head are objects that I’ve never actually looked at. But for many outside of science, seeing is believing.

In my first administrative job at the University of North Carolina, I learned about this while running the campus planetarium. On clear nights, we would set up telescopes for public viewings. It was common for people to see Saturn through the telescope for the first time and then frantically look to see whether we had taped a cartoon of the ringed planet to the end of the telescope. They had assumed that Saturn didn’t really look like the pictures in their grade-school classrooms.

While I was in that job almost 20 years ago, I was fortunate enough to convince the authors Will and Mary Pope Osborne to work with the university on a planetarium show based on their blockbuster children’s book series Magic Tree House. At the most suspenseful part of the show, the protagonists Jack and Annie end up dangerously close to the event horizon of a black hole—the to talk about it today. (Spoiler alert: Jack and Annie are rescued from spaghettification at the event horizon by Mary Pope Osborne herself.)

If we made the show today, we wouldn’t have to guess at what the black hole looks like. The image of the event horizon of the supermassive black hole in the nearby galaxy Messier 87 was a magnificent technical achievement and a worthy Breakthrough of the Year. But it is more than that. For a skeptical public that often rolls their eyes when they hear scientists say that they know things exist even though they cannot be seen, this is one more important object that we can see. Given the influence of black holes on the evolution of galaxies, this is a remarkable milestone in every respect.

There were also some extraordinary runners-up this year. When I was at Washington University in St. Louis, I had the privilege of watching research progress on restoring the gut microbiome in malnourished children. It’s intensely encouraging to know that there is a way to do this, and the companion papers that show how the microorganisms develop make it great science, as well. This has implications for public health in the developed world, too: Children need to start with excellent
Why data visualization: *Omics data are otherwise impenetrable*

Omics data are ...
High dimensional
Noisy

Your goal is ...
Clarity

- Science without **effective communication** is content without delivery
- Figures are the **center** of attention
- **Data visualization** can facilitate scientific discovery
Exploratory visualization can be critical

Input data → **Now what?**

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.3846</td>
<td>97.1795</td>
</tr>
<tr>
<td>51.5385</td>
<td>96.0256</td>
</tr>
<tr>
<td>46.1538</td>
<td>94.4872</td>
</tr>
<tr>
<td>42.8205</td>
<td>91.4103</td>
</tr>
<tr>
<td>40.7692</td>
<td>88.3333</td>
</tr>
<tr>
<td>38.7179</td>
<td>84.8718</td>
</tr>
<tr>
<td>35.641</td>
<td>79.8718</td>
</tr>
<tr>
<td>33.0769</td>
<td>77.5641</td>
</tr>
<tr>
<td>28.9744</td>
<td>74.872</td>
</tr>
<tr>
<td>26.1538</td>
<td>71.4103</td>
</tr>
</tbody>
</table>

... 142 rows

Box plot?

Bar plots?

Heat map?
Know your data!

Input data

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.3846</td>
<td>97.1795</td>
</tr>
<tr>
<td>51.5385</td>
<td>96.0256</td>
</tr>
<tr>
<td>46.1538</td>
<td>94.4872</td>
</tr>
<tr>
<td>42.8205</td>
<td>91.4103</td>
</tr>
<tr>
<td>40.7692</td>
<td>88.3333</td>
</tr>
<tr>
<td>38.7179</td>
<td>84.8718</td>
</tr>
<tr>
<td>35.641</td>
<td>79.8718</td>
</tr>
<tr>
<td>33.0769</td>
<td>77.5641</td>
</tr>
<tr>
<td>28.9744</td>
<td>74.4872</td>
</tr>
<tr>
<td>26.1538</td>
<td>71.4103</td>
</tr>
</tbody>
</table>

... 142 rows
Today’s agenda

- Introduction to data visualization
 - Common plots
 - How to make plots
- Application of data viz to immuno-oncology
- Caveats of data viz
- General tips and best practices
- Resources
Introduction to data visualization

- **Exploratory analysis**
 - Quality control
 - E.g., Outlier identification
 - Discovery

- **Figure generation**

- **Fundamentals of data viz**
 - https://clauswilke.com/dataviz/
How to do data visualization?

R and Python
- Preferred for reproducible figures and exploratory plots

Microsoft Excel/PowerPoint
- Useful for exploratory charts and simple schematics; from PowerPoint, can export as PDF or directly copy and paste into Illustrator for polishing

GraphPad Prism
- Publication quality, but limited to smaller datasets
- Tips: use ½ point line/axis thickness, remove bolding, use Helvetica font

Adobe Illustrator
- Schematics; polishing of figures made elsewhere; arranging multi-panel figures for publication

BioRender for schematics focused on biological sciences
Key graphical packages in R and Python

- Core libraries
- ggplot2
- ComplexHeatmap (Bioconductor)

- Plotly
- Matplotlib (fully customizable)
- Seaborn
 - Higher level version of Matplotlib with less options but easier to use
Basic plots

Bars ✓
Dots ✓
Grouped Bars ✓
Stacked Bars ✓
Heatmap ✓
Histogram ✓
Density Plot ✓
Boxplots ✓
Violins ✓
Strip Charts ✓

✓ Indispensable ✓ Often used ✓ Less common

https://clauswilke.com/dataviz/
Basic plots (cont.)

Indispensable ✓
Often used ✓
Less common ✓

Scatterplot ✓
Bubble Chart ✓
Paired Scatterplot ✓
Slopegraph ✓
Multiple Pie Charts ✓
Stacked Bars ✓
Stacked Densities ✓
Parallel Sets ✓

https://clauswilke.com/dataviz/
Heat maps

Visualize patterns in high-dimensional data, e.g., coordinately expressed genes, accessible chromatin, ChIP-seq peaks, etc.

Scaling and normalization are critical

Rows often expressed as z-scores

Popular color schemes (red-green color-blind accessible)
ComplexHeatmap (R)

- Bioconductor package for layering meta-data and other plots with one or more heat maps
- Highly customizable
- Supports multiple omic-style visualizations
- Addresses label crowding

Tutorial with data from a publication: https://github.com/kevinblighe/E-MTAB-6141
Data visualization for immuno-oncology

- scRNA-seq
- Bulk transcriptomics
- Visium (10x Genomics)

Tissue biopsy

Invasive

Liquid biopsy

Noninvasive
Data visualization for immuno-oncology

- Data viz for **DNA sequencing data**
 - Extensively covered elsewhere; see, e.g., https://genviz.org/

Tissue biopsy

Invasive

Noninvasive

Liquid biopsy

- scRNA-seq
- Bulk transcriptomics
- Visium (10x Genomics)
Combining single-cell and bulk assays for immunotherapy profiling

Discovery
- Few patients
- Extensive biospecimen collection
- Single-cell, high-dimensional analysis
- Technically challenging
- High cost relative to validation

Validation
- Many patients
- Limited biospecimen collection
- Conventional, low-dimensional analysis
- Technically straightforward
- Low cost relative to discovery

Use discovery single-cell data and apply analytical tools (e.g. CIBERSORTx) to impute cell fractions/states from bulk data

(Gohil et al., *Nat Rev Clin Oncol* 2021 18:244-256)

(Gohil et al., *Nat Rev Clin Oncol* 2021 18:244-256)
Digital cytometry with CIBERSORTx

Cell type reference profiles

In silico cytometry

Tumor/tissue sample
Dissociate
Single cells
scRNA-Seq or bulk sort
Cluster
Signature matrix

Tumor/tissue biopsy
OR
Blood draw
Bulk tissue RNA profile
Transcriptome database
CIBERSORTx

Cell type proportions
Cell type expression
Group I Group II
Low
Differential expression

https://cibersortx.stanford.edu
Steen et al., Methods Mol Biol (2020)
Discovering cancer resistance mechanisms

Favorable

Benefit

Resistance

Adverse

Severe Toxicity
Single-cell reference maps for cellular biomarker discovery

Single-cell reference maps for cellular biomarker discovery

Association of $PDCD1^{+}/CTLA4^{+}$ CD8 TILs with response to immune checkpoint blockade in patients with melanoma

Therapy:
- anti-CTLA4
- anti-PD1
- Either
- Either

PDCD1^{+}/CTLA4^{+} CD8 T cells (percentage of tumor content)

- $P = 0.02$
- $P = 0.02$
- $P = 0.009$
- $P = 0.002$
- $P = 0.009$

Cohort size:
- 23
- 14
- 16
- 8
- 14
- 12
- 37
- 25
- 16
- 9

Response:

Treatment time:

Preservation:

Profiling:

Dataset:
- VA
- N
- C
- VA/N/C
- N/C

Datasets:
- VA: Van Allen et al. (2015)
- N: Nathanson et al. (2016)
- C: Chen et al. (2016)

Association of \(\textit{PDCD1}^+ / \textit{CTLA4}^+ \) CD8 TILs with response to immune checkpoint blockade in patients with melanoma

Newman et al., \textit{Nature Biotechnology} (2019)
Discovering toxicity mechanisms

Favorable

Outcome

Benefit

Resistance

Severe Toxicity

Adverse
Toxicity is ”the dark side” of cancer immunotherapy

- **Immune-related adverse events (irAEs)** can occur in **any** organ system.
- Immune checkpoint inhibitor (ICI) efficacy hindered by irAEs (Wolchok et al., *NEJM* 2017): Checkmate 067
 - 59% experienced **grade 3 to 4 irAEs** with combination ICIs
 - 39% experienced irAEs that led to **treatment discontinuation**
- Pathogenesis remains **unclear**

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No toxicity</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Asymptomatic</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Symptomatic</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Life threatening</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Death</td>
<td></td>
</tr>
</tbody>
</table>
Single-cell discovery cohort

Lozano*/Chaudhuri*/Nene* et al., Nature Medicine (2022)
Single-cell discovery cohort

Lozano* / Chaudhuri* / Nene* et al., *Nature Medicine* (2022)
CyTOF
Determinants of severe irAEs from pretreatment blood

Elevated CD4 T_{EM} cells in pretreatment blood significantly associated with severe irAEs

Lozano*/Chaudhuri*/Nene* et al., *Nature Medicine* (2022)
Determinants of severe irAEs from pretreatment blood

Elevated CD4 T_{EM} cells in pretreatment blood significantly associated with severe irAEs

Lozano*/Chaudhuri*/Nene* et al., *Nature Medicine* (2022)
scRNA-seq
Paired analysis of 13 patients by scRNA-seq

CD4 T clusters 5 and 3 most correlated with CD4 T_{EM} (CyTOF) severe irAEs

Lozano*/Chaudhuri*/Nene* et al., Nature Medicine (2022)
Paired analysis of 13 patients by scRNA-seq

CD4 T clusters 5 and 3 most correlated with CD4 T_{EM} (CyTOF) severe irAEs

Lozano*/Chaudhuri*/Nene* et al., *Nature Medicine* (2022)
Bulk RNA-seq
Does bulk RNA-seq agree with single-cell data?

Lozano*/Chaudhuri*/Nene* et al., Nature Medicine (2022)
Does bulk RNA-seq agree with single-cell data?
Spatial transcriptomics
Rapid advances in spatial assay development

MERSCOPE (Vizgen) for single-cell spatial profiling of 500 genes

WHOLE SECTION
9 x 7 mm
Organization of tissue

WIDE FIELD OF VIEW
200 x 200 micron
Cell interaction/function

SUB-CELLULAR
12 x 12 micron
L2/3 IT Glutamatergic neuron

https://vizgen.com/products/
Single-cell profiling with spatial transcriptomics

- Current spatial transcriptomics (ST) platforms are **low spatial resolution** or have **low gene recovery**
- Most deconvolution methods impute cell type **fractions**

Vahid*, Brown*, Steen* et al., *Nature Biotechnology* (2023)

https://github.com/digitalcytometry/cytospace
Enhanced gene recovery in single-cell spatial transcriptomic data

Breast tumor specimen (MERSCOPE, n = 500 genes)

scRNA-seq atlas (Wu et al.) mapped to MERSCOPE with CytoSPACE

Tumor/normal regions

FOLR2 expression in macrophages (scRNA-seq)
Enhanced gene recovery in single-cell spatial transcriptomic data

Tumor/normal enrichment of CD4 T cell states (n = 23)

scRNA-seq mapped to MERSCOPE (whole transcriptome)

$\rho = 0.84$

$P = 1.7 \times 10^{-6}$

MERSCOPE (n = 500 genes)

$\rho = 0.42$

$P = 0.045$

Vahid*, Brown*, Steen* et al.
Caveats of data visualization

- Be mindful of the limitations of different visualization techniques, especially those that perform dimensionality reduction (e.g., PCA, t-SNE, UMAP)
- What you see is not always complete or accurate
Common visualization workflow for scRNA-seq

1. Perform QC
2. Filter for most variable genes
3. Do PCA to extract most informative signal (top 10-40 PCs)
4. Do UMAP (or t-SNE) in 2D – *no technique is always better

3D mammoth skeleton projected into 2D

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-SNE</td>
<td>Perplexity 50</td>
<td>13min</td>
</tr>
<tr>
<td>UMAP</td>
<td>Nneigh 50</td>
<td>2min</td>
</tr>
</tbody>
</table>

https://pair-code.github.io/understanding-umap/
Common visualization workflow for scRNA-seq

1. Perform QC
2. Filter for most variable genes
3. Do PCA to extract most informative signal (top 10-40 PCs)
4. Do UMAP (or t-SNE) in 2D – *no technique is always better

3D mammoth skeleton projected into 2D

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-SNE</td>
<td>Perplexity 2000</td>
<td>2hr</td>
</tr>
<tr>
<td>UMAP</td>
<td>Nneigh 50</td>
<td>2min</td>
</tr>
</tbody>
</table>

https://pair-code.github.io/understanding-umap/
Without statistics, not all patterns are meaningful

High and low groups

Same genes, hierarchically clustered within each group

2,060 genes

Higher

Lower
General tips and best practices

- Make text **BIGGER**!

As a rule of thumb, stand back from your monitor **at least 3 feet**

If the text isn’t legible, **enlarge it**

- Make figures self-contained (minimize reliance on captions)

- Use **consistent font size** for all text except panel letters

- Use color and/or shapes to distinguish categories or to brighten up the figure
General tips and best practices

Know your audience

Optimize your data presentation for simplicity, impact, and cosmetic appeal

“Sometimes a designer will make the visualization more complicated than it needs to be, not because he is trying to make the data look bad, but for precisely the opposite reason: he wants the data to look as good as possible. This is an equally bad mistake.”

“Your data is important and meaningful all on its own; you don’t have to make it special by trying to get fancy. Every dot, line and word should serve a communicative purpose: if it is extraneous or outside the scope of the visualization’s goals, it must go. Edit ruthlessly. Don’t decorate your data.”
Resources

- **Figure generation**

- **Fundamentals of data viz**
 - https://clauswilke.com/dataviz/

- **Newman Lab software tools**
 - https://anlab.stanford.edu/software

- **Immunotherapy expression datasets**
 - http://tide.dfci.harvard.edu/download/