Preclinical Assessment of Cell and Gene Therapy Products to Support an IND: A CBER/FDA Perspective

Rukmini Bhardwaj, PhD
Office of Tissues and Advanced Therapies (OTAT)
Center for Biologics Evaluation and Research (CBER)
U.S. Food and Drug Administration (FDA)

SITC Cancer Immunotherapy Winter School
January 24-28, 2022
Presentation Outline

- Organizational structure of CBER/OTAT and regulated products
- Cell and Gene Therapy (CGT) Products
- Regulatory Review Principles
- Preclinical considerations for assessing the safety and activity of CGT products
- Potential Pitfalls/Regulatory Issues
- Opportunities for early interaction with CBER/OTAT
CBER Organizational Structure and Products
Regulated by OTAT
Center for Biologics Evaluation and Research (CBER) - Product Review Offices

- Office of the Center Director
- Office of Tissues and Advanced Therapies (OTAT)
- Office of Blood Research and Review (OBRR)
- Office of Vaccines Research and Review (OVRR)
Diversity of CBER/OTAT-Regulated Products

- **Gene therapies (GT)**
 - Ex vivo genetically modified cells
 - Non-viral vectors (e.g., plasmids)
 - Replication-deficient viral vectors (e.g., adenovirus, adeno-associated virus, lentivirus)
 - Replication-competent viral vectors (e.g., measles, adenovirus, vaccinia)
 - Microbial vectors (e.g., Listeria, Salmonella)

- **Stem cells/stem cell-derived products**
 - Adult (e.g., hematopoietic, neural, cardiac, adipose, mesenchymal)
 - Perinatal (e.g., placental, umbilical cord blood)
 - Fetal (e.g., neural)
 - Embryonic
 - Induced pluripotent stem cells (iPSCs)

- **Functionally mature/differentiated cells** (e.g., retinal pigment epithelial cells, pancreatic islets, chondrocytes, keratinocytes)

- **Products for xenotransplantation**

- **Therapeutic vaccines and other antigen-specific active immunotherapies**

- **Blood- and Plasma-derived products**
 - Coagulation factors
 - Fibrin sealants, Fibrinogen, Thrombin, Plasminogen
 - Immune globulins
 - Anti-toxins
 - Snake venom antisera

- **Tissues**

- **Devices**

- **Combination products**
 - Engineered tissues/organs
CGT Products: Definition and Therapeutic Use in Human Diseases

- Cell therapy—autologous, allogeneic, or xenogeneic living cells that may or may not have been processed *ex vivo*

- Gene therapy—products that mediate their effects by transcription and/or translation of transferred genetic material, or by specifically altering host (human) genetic sequences
 - Vector based—viral/non-viral
 - *Ex vivo* genetically modified cells
 - Products incorporating genome editing

Examples

- Cell therapies: mesenchymal stem cells (MSCs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells

 Alzheimer’s, graft versus host disease, solid tumors

Molecular Therapy, Volume 24, Issue 3, March 2016, Pages 430-446
Examples

- Cell therapies: mesenchymal stem cells (MSCs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells
 Alzheimer’s, graft versus host disease, solid tumors

- Genetically engineered cell therapies: CD34+, T cell receptor (TCR)-T, chimeric antigen receptor (CAR) T cell
 Blood disorders, hematologic malignancies, solid tumors

Molecular Therapy, Volume 24, Issue 3, March 2016, Pages 430-446
Examples

- Cell therapies: mesenchymal stem cells (MSCs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells
 Alzheimer’s, graft versus host disease, solid tumors

- Genetically engineered cell therapies: CD34+, T cell receptor (TCR)-T, chimeric antigen receptor (CAR) T cell
 Blood disorders, hematologic malignancies, solid tumor

- Vector-based gene therapies: viruses, plasmids
 Monogenic diseases, cancers
Examples of CGT-based Immunotherapy Products Regulated in OTAT

Examples

- Chimeric Antigen Receptor (CAR) T cells
- TCR transgenic (Tg) T cells
- Non-T cell CARs (B cell, NK cell, etc.)
- Regulatory T cells (Tregs)
- Mesenchymal Stem Cells (MSCs)
- Therapeutic Vaccines (e.g., dendritic cells, irradiated tumor cells, peptide vaccines, lipid nanoparticles carrying mRNA, etc.)

Molecular Therapy, Volume 24, Issue 3, March 2016, Pages 430-446
Lifecycle for Investigational Products

- Preclinical
- Clinical Trials
 - Phase 1
 - Phase 2
 - Phase 3
- Marketing Application
- Post-marketing

- Development
- Preclinical

- IND Submission
- End of Phase 1 Meeting
- End of Phase 2 Meeting
- BLA
- Safety Meetings
- Marketing Submission
Evaluating Safety and Activity of CGT Products to Support an IND

- IND Application: required to conduct a clinical trial in the US
 - Using an investigational product in a first-in-human (FIH) trial
 - Using an approved/investigational product for a new clinical indication/route of administration (ROA)/formulation
 - Has a 30-day FDA review clock

- IND review team:
 - Is interdisciplinary
 - Regulatory Project Manager (RPM)
 - Chemistry, Manufacturing, and Controls (CMC) reviewer
 - Pharmacology/Toxicology (P/T) reviewer
 - Clinical reviewer
 - Statistical reviewer
 - Consult reviewer(s) (as needed)
 - Reviews information supporting rationale and safety of the trial
 - Interacts with the sponsor, as needed, to resolve issues or concerns
 - Makes a “go” or “hold” decision by the 30-day date
21 CFR 312.20 Subpart B: IND Application

☐	Form FDA 1571	21 CFR 312.23(a)(1)
☐	Table of Contents	21 CFR 312.23(a)(2)
☐	Introductory statement and general investigational plan	21 CFR 312.23(a)(3)
☐	Investigator's brochure	21 CFR 312.23(a)(5)
☐	Protocols	21 CFR 312.23(a)(6)
☐	Chemistry, manufacturing, and control data (including environmental assessment)	21 CFR 312.23(a)(7)
☑	Pharmacology and toxicology data	21 CFR 312.23(a)(8)
☐	Previous human experience	21 CFR 312.23(a)(9)
☐	Additional information	21 CFR 312.23(a)(10)
☐	Biosimilar User Fee Cover Sheet	Form FDA 3792
☐	Clinical Trials Certification of Compliance	Form FDA 3674
Key Elements in Regulatory Review of CGT Products

- Science-based approach to regulation

- **Product manufacturing (CMC)**

- **Pharmacology/Toxicology (P/T)**

- **Clinical trial design**
Key Elements in Regulatory Review of CGT Products

- Science-based approach to regulation
- Product manufacturing (CMC)
- Pharmacology/Toxicology (P/T)
- Clinical trial design
Considerations for Preclinical Programs for CGT Products
How Do Preclinical Data Contribute to the Proposed Clinical Plan?

- Provide **rationale** or **proof of concept (POC)** for the first-in-human (FIH) clinical trial in subjects with the target disease

- Make recommendations to inform clinical trial design
 - Eligibility criteria
 - Route of administration (ROA), initial safe starting dose level, dose escalation scheme, dosing regimen
 - Potential toxicities, clinical monitoring, risk mitigation

- Provide comprehensive **safety assessment** in a relevant animal species/model
 - Identifying any acute and chronic, local and systemic toxicities
 - Risks of the proposed ROA, delivery procedure
How does CBER/OTAT evaluate preclinical safety and activity?

...and what sponsors should consider when developing a new product?
Initial Considerations for a Preclinical Testing Program

- The diversity and biological properties of CGT products necessitate a flexible testing strategy - no “one size fits all”
 - Based on accumulated knowledge and experience
 - Based on available technology
 - Science-based
 - Data-driven
Sources of Preclinical Data to Support an IND

- Appropriately designed, well-executed POC studies
- Good Laboratory Practice (GLP)-compliant toxicology studies
- Published data in peer-reviewed journals
- Authorized cross-reference to similar products in previous US FDA submissions
General Expectations for a Preclinical Testing Program for CGT Products

- Pharmacology
 - Provide *rationale* or *POC* for CGT product administration in a specific clinical population
 - Understand mechanism of action and biological activity in a relevant animal species/disease or injury model
 - Select optimal dose levels, and dosing regimen
 - Assess vector biodistribution/cell fate *in vivo* to support activity following clinically relevant ROA

- Prospect of Direct Benefit (PDB) is required for clinical studies in children (*per 21 CFR 50.52 Subpart D*)—if the trial represents more than minimal risk
General Expectations for a Preclinical Testing Program for CGT Products

 Toxicology

- Provide comprehensive **safety assessment** of the CGT product in a relevant animal species to support clinical trials
- Determine a No-Observed-Adverse-Effect-Level (NOAEL)
- Characterize adverse findings following product administration:
 - Identify target tissue(s) of toxicity
 - Local or systemic effects
 - Acute, delayed, or prolonged findings
 - Cells/vector/transgene-related immune responses
 - Tumorigenicity risk
 - Dosing procedure or device-related toxicities

- Cell/vector/transgene presence is important in the interpretation of any findings
Potential Safety Concerns for CGT Immunotherapies

- Product-related
 - Manufacturing (e.g., expansion, genetic modification, encapsulation, scaffold seeding)
 - Inappropriate cell proliferation (i.e., tumor formation)
 - Inappropriate cell differentiation (i.e., ectopic tissue formation)
 - Cell/vector distribution to non-target sites and potential toxicities
 - Inflammatory/immune response to the administered product
 - Toxicity to host tissues/organs (e.g., GVHD for allogeneic T cell products)
 - Toxicities due to cross-reactivity- on-target/off-tumor, off-target activity
 - Toxicities due to pharmacological action of CGT- cytokine release, tumor lysis, etc.

- Procedure and/or device-related
CGT Product Administered in Preclinical Studies

- **Product should be as similar as possible to the intended clinical product**
 - Tissue/sample source, harvesting procedure, expansion, culturing, formulation, encapsulation/scaffold seeding, storage, etc.
 - Vector production/vector construct/transgene expression/final formulation/titer

- **Adequate product characterization**
 - Cellular morphology, phenotype
 - Molecular, biochemical markers
 - Vector sequence, genomes, empty capsids

- **Animal-derived analogous product**
 - Characterize the level of analogy between the animal product and the intended human product
 - Translation of data to humans
Considerations for Appropriate Animal Species/Model(s)

- Scientific justification should be provided for each animal species/model(s) used
 - There is no ‘default’ to the use of nonhuman primates
 - There is no ‘default’ to the use of both a rodent and a non-rodent species
- Assess safety, distribution, and bioactivity using appropriate animal species/model(s)
- Understand the limitations of each species/model(s) used
Selection of Animal Species/Model(s)

- Comparability to the target patient population
 - Phenotype, pathophysiology, clinical outcomes
- Permissiveness to cell product
 - Human derived, autologous, allogeneic
- Anatomic site of product delivery
 - Comparable to clinical, if feasible
- Feasibility of using the intended clinical delivery system/procedure
Preclinical Study Design Considerations

- Nonbiased
- Mimic the planned clinical scenario as closely as possible
- Administration of appropriate control product and multiple dose levels of the investigational product
- Adequate numbers of animals/group to enable robust study interpretation
 - Incorporate the three R’s of animal testing into preclinical programs
 - Reduce
 - Refine
 - Replace
Preclinical Study Design Considerations

- Sufficient study duration to assess both acute and long-term outcomes
- Multiple time points for evaluations
- Comprehensive bioactivity, distribution, and safety assessments
- Other specific in-life/terminal assessments
Mirror the Clinical Scenario (as Feasible)

- **Mimic clinical scenario as closely as possible**
 - Test clinical product and formulation
 - Mimic clinical injection procedure, anatomical location, delivery system / device**, timing of product delivery, dosing regimen

**Conduct bench testing of the delivery device with the CGT product to determine product-device compatibility and verify the dose level administered
Study Assessments and Endpoints

Multiple in-life and post-mortem time points for activity and safety
- Biochemical, functional outcomes (e.g., neurological, cardiac, ophthalmic) which are disease dependent
- Bio Distribution—cells, vector
- Tumorigenicity—cells, vector, transgene
- Transgene—expression, activity
- Immunogenicity—cells/vector/transgene

Standard toxicology parameters
- Mortality, in-life—body weights, food consumption, etc.
- Clinical observations
- Clinical pathology
- Gross pathology and histopathology—target and non-target tissues (use of standard IHC, ISH etc., microscopic pathology)
- Nature/timing/severity/frequency of adverse findings
Vector Biodistribution /cell fate

- **Biodistribution profile in biofluids and tissues**
 - Target and nontarget tissues: Distribution, Persistence, and Clearance
 - For GT products
 - ✓ Vector presence and clearance profile in target, non-target, and germline tissues
 - ✓ Transgene expression (level and duration) in vector positive tissues
 - For CT products
 - ✓ Cell survival, engraftment, integration, proliferation, differentiation, and migration

- **Important to evaluate the POC and Safety results with vector biodistribution /cell fate data**

- **Guidance for GT-based BD assessment:**
 - Guidance for Industry: Long Term Follow-up After Administration of Human Gene Therapy Products (Jan. 2020)
Regulatory Expectations for Toxicology Studies

21 CFR 312.23 (a)(8) – Pharmacology and Toxicology

- For each toxicology study intended primarily to support safety, a full tabulation of data should be submitted.

- Each toxicology study submitted should be performed per GLP (21 CFR Part 28), or an explanation provided.

- Oversight of the conduct of all non-GLP toxicology studies and the resulting final study report by an independent QA unit/person is strongly recommended (21 CFR 58.35).
Potential Preclinical Pitfalls When Submitting an IND

- Insufficient information to assess subject risk, including:
 - Insufficient characterization of product safety
 - Lack of preclinical safety data for intended product
 - Incomplete safety study reports

- Inadequate preclinical study design
 - Differences between preclinical and clinical products
 - Irrelevant animal species/model
 - Irrelevant ROA
 - Inadequate animal numbers/dose levels/study duration
 - Inadequate evaluations (safety/activity endpoints)

- Inadequate data to support PDB in a FIH study in children (21 CFR 50 Subpart D)
Opportunities for Interaction During Preclinical Development

- Preclinical Development
- Preclinical
- Phase 1
- Phase 2
- Phase 3
- BLA
- Marketing Application
- Post-marketing

- INTERACT
- Pre-IND Meeting
- End of Ph 1 Meeting
- End of Ph 2 Meeting
- Pre-BLA Meeting
- IND submission
INTERACT Meetings

- **INITial Targeted Engagement for Regulatory Advice on CBER products**

- **Goal:** To obtain early feedback on a product development program for a novel investigational agent

- **Purpose:**
 - A mechanism for early communication with OTAT
 - Non-binding, informal scientific discussions between CBER review disciplines and the sponsor
 - Initial targeted discussion of specific issues

- **Requests** for INTERACT meetings should be sent to INTERACT-CBER@fda.hhs.gov

[Link to full document](https://www.fda.gov/BiologicsBloodVaccines/ResourcesforYou/Industry/ucm611501.htm)
INTERACT Meetings (Cont’d)

- **Timing:** When you have generated preliminary preclinical data (POC and some safety), but are not yet ready to conduct definitive preclinical safety studies

- **Pharmacology/Toxicology (P/T) advice:**
 - Design of POC or other pilot safety/distribution studies
 - Adequacy of the selected animal species/models
 - Acceptability of innovative preclinical testing strategies, products and/or delivery modalities
 - Advice on modification of a preclinical program or study design, as applicable, to ensure judicious use of animals
Pre-IND Meetings

- **Goal:** To achieve a successful IND submission

- **Purpose:**
 - Non-binding, *formal* scientific discussion between all review disciplines (CMC, P/T, and Clinical) and the sponsor
 - Comprehensively communicate the product/clinical development plan
 - Discuss the format of the IND submission

- **Timing:**
 - POC and preliminary safety studies completed
 - Ready to conduct definitive safety studies
Pre-IND Meetings: Preclinical Data

- A comprehensive summary of all completed preclinical studies
 - *In vitro* and *in vivo* studies, animal species/models, study designs, resulting data and interpretation

- Complete protocols for the proposed definitive preclinical safety/toxicology, distribution studies
 - Animal species/models, dose levels, dosing regimen and procedure, study endpoints, sacrifice intervals, etc.
FDA Guidance for Human CGT Products

- Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products (June 2015)

- Guidance for Industry: Long Term Follow-Up After Administration of Human Gene Therapy Products (Jan 2020)
Guidance for Industry: Human Gene Therapy for Retinal Disorders (Jan 2020)

Guidance for Industry: Human Gene Therapy for Rare Diseases (Jan 2020)

Guidance for Industry: Human Gene Therapy for Hemophilia (Jan 2020)

Draft Guidance for Industry: S12 Nonclinical Biodistribution Considerations for Gene Therapy Products (September 2021)
Summary

- OTAT resides within CBER and regulates a wide array of products, including cell and gene-based therapies.
- The preclinical program for any CGT product is determined on a case-by-case basis.
- Preclinical data submitted in the IND should support the safety and biological activity of the CGT product in the proposed clinical indication.
- There are multiple opportunities to obtain FDA feedback on preclinical development plans prior to IND submission.
- Novel therapies mean novel testing paradigms, therefore, pre-submission interaction with FDA is encouraged.
Acknowledgements

- Colleagues in OTAT/CBER
Contact Information

- Rukmini Bhardwaj, PhD
 rukmini.bhardwaj@fda.hhs.gov

- Regulatory Questions:
 OTAT Main Line – 240 402 8190
 Email: OTATRPMS@fda.hhs.gov and Lori.Tull@fda.hhs.gov

- OTAT Learn Webinar Series:
 http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

- CBER website: www.fda.gov/BiologicsBloodVaccines/default.htm

- Phone: 1-800-835-4709 or 240-402-8010

- Consumer Affairs Branch: ocod@fda.hhs.gov

- Manufacturers Assistance and Technical Training Branch: industry.biologics@fda.hhs.gov

- Follow us on Twitter: https://www.twitter.com/fdacber
Thank you!