Asynchronous Video Interviews in Recruitment and Selection: Lights, Camera, Action!

Call for Papers

Guest Editors:

Patrick D. Dunlop, Future of Work Institute, Curtin University, Western Australia, Australia, patrick.dunlop@curtin.edu.au

Louis Hickman, Psychology Department, Virginia Tech, Virginia, United States of America, louishickman@gmail.com

Djurre Holtrop, Tilburg School of Social and Behavioral Sciences, Tilburg University, Netherlands, D.J.Holtrop@tilburguniversity.edu

Deborah M. Powell, Department of Psychology, University of Guelph, Ontario, Canada, dpowell@uoguelph.ca

Theoretical Contribution and Practical Importance

Technological developments are rapidly changing how job applicants and organizations interact (Woods et al., 2019). The Asynchronous Video Interview (AVI) is one of these recent assessment technologies influencing selection practice. When completing an AVI, applicants log into an online software platform using a device (e.g., computer, smartphone) with a camera and microphone and video-record their responses to a series of interview questions. These video-recorded responses are later reviewed and evaluated. In contrast to traditional interviews, whether conducted on the phone, virtually, or face-to-face, while completing AVIs applicants are unlikely to experience direct interaction with a representative from the hiring organization. Accordingly, this technology affords recruiters many benefits in terms of scalability, reach, and convenience. Similarly, applicants can benefit from the flexibility of being able to complete the AVI at any time or place of their choosing (Basch & Melchers, 2019; Guchait et al., 2014). It is therefore unsurprising that AVIs are rapidly being adopted among recruiters globally, with the need to socially distance during the COVID-19 crisis playing a major role in accelerating adoption rates (Handler, 2020; Strazzula, 2020).

There are good reasons to be optimistic about the potential for AVIs to contribute to better selection practice. Of note are the revised meta-analytic estimates of criterion-validity of different assessment types recently presented by Sackett et al. (2021). This research revealed structured interviews to be highly valid predictors of job performance with relatively small majority-minority score differences. Arguably, no interview format has the potential for more highly structured content than an AVI (Basch & Melchers, 2019). Indeed, each applicant receives exactly the same questions (without prompting, ancillary information from the applicant, or questions from the applicant), in the same order, while being granted standardized thinking and responding times (Campion et al., 1997). Similarly, AVIs offer many opportunities to structure the evaluation of applicants, whether by using automated artificial intelligence (AI) algorithms (Hickman et al.,
2022), or through standardized rating scales embedded within an AVI platform. Nonetheless, as we discuss below, there is also scope for the structure in an AVI to be undermined through, for example, unstandardized interviewing conditions/settings, different devices and hardware quality being used by applicants, or the use of inconsistent and low structure evaluation methods.

Indeed, much like traditional interviews, AVIs vary greatly in their contents and procedures. Compared to traditional interviews, these variations are partly similar and partly novel. For example, users (e.g., recruiters or hiring managers) can decide on the number and content of interview questions, whether the questions are presented via video-media or text only, the amount of ‘thinking time’ a applicant receives before a recording stats, the amount of time given to record the response, whether applicants can re-record a response, and how the responses will be evaluated (number and types of judges, rating scales, AI-based automated reviews). These modular components (Lievens & Sackett, 2017) of AVI design may have substantial implications for outcomes such as reliability, validity, and adverse impact (Lukacik et al., 2022). Although Lukacik et al. (2022) made several propositions regarding the implications of AVI design for these outcomes, to date, very little empirical research has been conducted to test these (Basch et al., 2021). Practitioners are therefore mostly left to rely on intuition or default settings when designing AVIs (Dunlop et al., 2022).

We are also only beginning to understand how AVI use affects the ‘candidate experience’. Early research suggested that AVIs were viewed less favorably than synchronous alternatives (Blacksmith et al., 2016; Brenner et al., 2016; Langer et al., 2017), but a more recent investigation found that AVIs were viewed only marginally less favorably than the two-way videoconference format (Griswold et al., 2021), suggesting that attitudes towards these assessments may be changing. Further, Basch et al. (2022) discovered that, when framed as an early form of assessment (i.e., for shortlisting applicants who proceed to face-to-face interviews), AVIs were regarded about as favorably as cognitive tests and application blanks. Again, however, we know very little about how specific AVI designs might impact applicant reactions (Lukacik et al., 2022).

AVIs also introduce new concerns about the fair evaluation of applicants. In particular, the video recordings from AVIs contain many sources of information that are not job relevant, such as the quality of technical equipment (camera, microphone, internet connection), the applicant’s location (e.g., SES cues in a person’s home), and the applicant’s demography, which may lead to non-job related information being incorporated into evaluations (Torres & Gregory, 2018). Further, the use of AI scoring for AVIs, although efficient in terms of time and cost savings, also comes with potential risks that I-O psychologists must address (Tippins et al., 2022). For example, using nonverbal and paraverbal behaviors in AI scoring algorithms can exacerbate group differences (Booth et al., 2021), and concerns exist that people with certain, legally protected disabilities may be disadvantaged by these tools (Hickman et al., 2022). Additionally, AI scoring algorithms can result in machine learning measurement bias (Tay et al., 2022) and predictive bias for a variety of reasons. Lastly, the use of AI in AVIs can impact applicant reactions (Acikgoz et al., 2020) and user acceptance (Mirowska & Mesnet, 2021). Therefore, understanding how to develop reliable, valid, fair, and acceptable AI scoring systems is of paramount concern.

Objectives and Scope

The set of topics we propose for the special issue fall into the four broad themes listed below. Under each theme we have provided some suggested topics—however, these themes and topics are suggestions only. Though the focus is on AVIs, we will also consider any empirical research relating to similar asynchronous formats (e.g., chatbot interviews). We are open to empirical studies including registered reports and are especially interested in studies that involve field data from real job applicants or other users of the technologies (e.g., recruiters, hiring managers).

The four categories and suggested topics are:

1. **Effects of AVI methods and constructs on validity**
What constructs are measured in AVIs? What is the evidence of the AVI’s convergent and discriminant validity in relation to other established psychometric constructs? What unique information is garnered from AVIs?

What questions are typically asked in an AVI, and how does question content influence the nature of the constructs that are measurable in an AVI?

How do other AVI design features such as thinking and responding time influence the nature of the constructs that are measurable?

What are the relations of AVI evaluations with job performance and other criteria? How are these relations affected by AVI design decisions?

Can modular approaches to AVI design advance our understanding of how to design AVIs in a way that maximizes reliability and validity?

2. Factors affecting human AVI evaluations

- How do characteristics of applicants (e.g., ethnicity, gender, age, accents, body language) affect evaluations of their AVI responses?
- What behaviors do evaluators engage in, and how do these influence their evaluations (e.g., watching recorded responses at an enhanced playback speed, watching only the first portion of a response, watching only one response out of a whole set?)
- How do different AVI design and evaluation features affect the reliability, validity, and adverse impact of evaluations (e.g., multiple evaluators, behaviorally anchored rating scales, evaluator training, showing limited information)?
- Which psychological processes guide human evaluations about applicant suitability in AVIs and how can human evaluations be optimized?
- How are job irrelevant signals from video-recorded responses processed by evaluators (e.g., internet connection quality, camera or microphone quality, background stimuli)?

3. AI/machine learning (ML) and its role in evaluating AVIs

- How can algorithms enhance human evaluations of AVIs?
- How well do AI and ML algorithms perform with respect to the fair and unbiased evaluation of applicants?
- Are certain algorithmic approaches more suitable for certain situations?
- How can AI and ML be used to reduce adverse impact in the evaluation of applicants? To what extent do irrelevant factors, such as the quality of technical equipment and applicant demography, affect AI scores?
- How do alternative formats to asynchronous interviews, such as chat-based interviews, affect applicant reactions to and the reliability and validity of AI scores?

4. Applicant Reactions to AVIs.

- How is the employer brand affected by the use of AVIs in selection?
- How do AVI design decisions affect applicant reactions to AVIs?
- How can AI in the AVI context be implemented in a manner that improves applicant reactions?

Timelines

Update: Due to popular demand, we have decided to open submissions from January 2023! We will send papers out to review as soon as possible after submission, and those that are accepted for publication will appear ‘online first’ until being allocated to the print version of the special issue, scheduled for release in Q1 2025. The timeline below reflects the expected timeline for papers submitted on or close to October 31, 2023, however papers submitted earlier will work through the process as they are submitted (i.e., they will not be ‘held’ until October 31, 2023).
To expedite review and publication timelines, the Guest Editorial team will recruit a pool of expert reviewers from academic institutions and AVI vendor organizations. The proposed timeline is:

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Manuscript Submission</td>
<td>October 31, 2023</td>
</tr>
<tr>
<td>First Round of reviews</td>
<td>November 1, 2023 – January 31, 2024</td>
</tr>
<tr>
<td>Revision and resubmission period</td>
<td>February 1, 2024 – May 1, 2024</td>
</tr>
<tr>
<td>Second Round of reviews</td>
<td>May 1, 2024 – June 30, 2024</td>
</tr>
<tr>
<td>Final Submissions</td>
<td>August 31, 2024</td>
</tr>
<tr>
<td>Publication of special issue</td>
<td>Q1 2025</td>
</tr>
</tbody>
</table>

References

